Линейная алгебра Примеры

Trovare la Derivata - d/dx (x+7)/x+6/(3x+21)
Этап 1
По правилу суммы производная по имеет вид .
Этап 2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.1
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 2.2
По правилу суммы производная по имеет вид .
Этап 2.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.4
Поскольку является константой относительно , производная относительно равна .
Этап 2.5
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.6
Добавим и .
Этап 2.7
Умножим на .
Этап 2.8
Умножим на .
Этап 3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 3.1
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 3.1.1
Вынесем множитель из .
Этап 3.1.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 3.1.2.1
Вынесем множитель из .
Этап 3.1.2.2
Вынесем множитель из .
Этап 3.1.2.3
Вынесем множитель из .
Этап 3.1.2.4
Сократим общий множитель.
Этап 3.1.2.5
Перепишем это выражение.
Этап 3.2
Поскольку является константой относительно , производная по равна .
Этап 3.3
Перепишем в виде .
Этап 3.4
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 3.4.1
Чтобы применить цепное правило, зададим как .
Этап 3.4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.4.3
Заменим все вхождения на .
Этап 3.5
По правилу суммы производная по имеет вид .
Этап 3.6
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.7
Поскольку является константой относительно , производная относительно равна .
Этап 3.8
Добавим и .
Этап 3.9
Умножим на .
Этап 3.10
Умножим на .
Этап 4
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 4.2
Применим свойство дистрибутивности.
Этап 4.3
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Умножим на .
Этап 4.3.2
Вычтем из .
Этап 4.3.3
Вычтем из .
Этап 4.3.4
Вынесем знак минуса перед дробью.
Этап 4.3.5
Объединим и .
Этап 4.3.6
Вынесем знак минуса перед дробью.